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The classic papers of Malinvaud and Samuelson pointed out that even in »clas-
sicaly infinite horizon economies a competitive program of resource alloca-
tion need not be efficient or Pareto optimal. This led to the more general ques-
tion of designing allocation mechanisms in the sense of Hurwicz that are de-
centralized intertemporally and have appealing normative properties. The pa-
per first reviews some recent results on this topic and goes on to survey properties
of evolutionary processes that do not involve communication with Juture agents.

1. Introduction

The problem of achieving an optimal allo-
cation of resources in a decentralized, infinite
horizon economy with finitely-lived agents has
been repeatedly raised in the literature. Initial-
ly, studies by Malinvaud (1953) and Samuel-
son (1958) {for a recent assessment, see Malin-
vaud (1987)] indicated that even in a »classi-
cal» infinite horizon economy, a competitive
program may be inefficient or Pareto non-
optimal. It is only recently that the problem
of informational decentralization in infinite
economies has been explored formally by
using concepts from the literature on de-
signing resource allocation mechanisms. In
this review, we provide an exposition of the
main results in the framework of an aggrega-
tive model. Shorn of technicalities, such a
model seems to provide one of the simpler
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Dasgupta, Leonid Hurwicz, Lionel McKenzie, Roy
Radner, Debraj Ray and Stanley Reiter JSor helpful dis-
cussions. The support of the Center for Analytic Fco-
nomics at Cornell University is gratefully acknowledged.

frameworks for isolating those features of a
dynamic economy that are critical in limiting
the possibilities of decentralization of decision
making. Throughout this paper we shall make
restrictive assumptions to facilitate statements
of results in the simplest and sharpest form.

In Section II we collect some basic concepts
from the literature on mechanism theory. The
formal definition of a mechanism that is con-
venient to use in our context is due to Mount
and Reiter (1974), and, for us, it is best inter-
preted in terms of a verification scenario. In
Section IIT we recall some basic results from
the literature on intertemporal allocation. We
provide conditions under which programs that
are »optimal» according to some evaluation
(social goal) criterion can be shown to exist.
In Section IV we examine the relationship be-
tween such optimal programs and those that
can be »supported» by w»competitive» or
»shadow» prices by postulating an appro-
priate version of a »transversality condition».

These earlier results led to a discussion on
the possibility of attaining optimal infinite
programs in a »decentralized» manner. In-
deed, our point of departure is the assessment
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of the contribution of Malinvaud (1953) by
Koopmans (1957). Koopmans felt that the
typical ’transversality’ condition which is
sufficient to guarantee efficiency of competi-
tive programs was not 'decentralizable’. In
Section [V we review the recent results which
indicate that in a stationary environment one
can identify optimality of competitive pro-
grams through a sequence of period-by-period
verifications instead of the asymptotic trans-
versality condition. The additional messages
or conditions that can completely character-
ize optimal competitive programs depend on
the structure of the particular model. In Sec-
tion V we provide alternative period-by-period
verification conditions which also character-
ize the optimality of competitive programs;
this characterization is new. In Section VI we
discuss intertemporal decentralized mecha-
nisms formally and provide examples of some
mechanisms which can realize the social goal
of optimality by using the results of Sections
III—V. In Section VII we consider non-
stationary environments where the producer
has incomplete information about the future
evolution of technologies, and report an im-
possibility result on the realization of optimal
allocations by any mechanism in this frame-
work.

In a static framework, if an auctioneer be-
gins with an »equilibrium» message, one can
visnalize the participants responding to such
a message »quickly», and a corresponding
equilibrium allocation (action’ or quantity de-
cisions) can be implemented. In an infinite
horizon economy, not all the agents can be
*assembled’ to verify equilibrium conditions
in response to a proposed message. Thus, even
if we start with an equilibrium message, if one
requires the responses of all the agents before
allocations can be carried out, no action takes
place at all! This difficulty has led to the re-
cent development of a notion of »evolution-
ary processes» where consumption/invest-
ment decisions are carried out period after
period on the basis of behavior rules that do
not require communication with future [»as
vet unborn»] agents. In Section VIII we brie-
fly review this relatively unexplored area. Fi-
nally, we have some bibliographical notes on
the literature.

It has been observed by Raduer (1972, p.
188) that »we may think of decentralization
as a special case of division of labor, where
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»labory in question is that of making deci-
sions.» The organizer can regard the members
of the organization as »machines», receiving
messages as inputs and producing messages
and actions as outputs. »Beyond this, the or-
ganizer can utilize members also to produce
strategies and even modification of the organi-
zation.» Viewed this way, »an organization is
information-decentralized to the extent that
different members have different information,
and quthority-decentralized to the extent that
individual members are expected (by the or-
ganizer) to choose strategies and/or modify
the rules of the game.» The scope of the
present essay is quite narrow: we do not con-
sider questions related to authority-decentrali-
zation, or incentives to follow specific rules
of the game. In our model, the agents are
given specific rules for verifying certain
»myopic» equilibrium conditions. Our prima-
ry task is to explore the extent to which a se-
quence of such shori-run verifications based
on limited information can achieve some long
run goals.

2. Decentralized Resource Allocation
Mechanisms

Development of a theoretical framework
that is broad enough to evaluate and compare
alternative economic systems has been a pri-
mary motivation behind the research on re-
source allocation mechanisms. The point of
departure for many directions is the Walrasian
model of equilibrium and the auctioneer-
guided tatonnement process describing a
phase of message exchange prior to the attain-
ment of an equilibrium. In a »classical» en-
vironment (absence of externalities, indivisi-
bilities and increasing returns etc.) sufficient
conditions for the existence of such an equi-
librium have been elaborated, and an equilib-
rium is shown to be Pareto optimal and un-
biased. However, to the extent that indivisi-
bilities or increasing returns play an important
role in a particular economy, one is left with
the question of how best to organize the allo-
cation of resources in such situations to meet
specific standards of performance.

The difficulties of achieving an equilibrium
through a ’tatonnement’ have also been
pointed out. The examples of Scarf (1960) and
Gale (1963) showed that a tatonnement need
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not converge at all, or need not converge to
a ’fair’ equilibrium. Indeed, in a discrete time
formulation, one can construct examples of
tatonnement displaying ‘robust’ topological
chaos and ergodic chaos in a class of econo-
mies even with two goods (Bala and Majum-
dar (1990)). Furthermore, since no trade can
take place out of equilibrium, if convergence
does not occur in finite time, no trade is pos-
sible in finite time [see Arrow-Hahn {1971)
and Fisher (1989) for detailed discussions]. All
this has stimulated alternative non-Walrasian
equilibrium concepts as well as non-tatonne-
ment processes [see Mukherji (1990) for a re-
cent exposition].

Another prominent feature of the Waira-
sian model is the *decentralized’ nature of de-
cision making which, it is claimed, ’utilizes in-
centives’ and achieves ’economies of informa-
tion handling’. While exceilent informal ex-
positions of the various related issues have
been available since the market socialism de-
bate, a rigorous axiomatic analysis of many
aspects has been the principal task and accom-
plishment of what has been called the »new?
welfare economics» (Reiter (1986)). We shall
now provide some formal definitions (follow-
ing Mount and Reiter (1974)) related to re-
source allocation mechanisms. This will be
followed by a somewhat informal discussion
of the various concepts involved,

We consider the following objects to be
given: a set of agents, 1, a set of environments,
EC HI E; [where E; is the set of environ-

1£

ments of agent iel], and a space of alloca-
tions, A.

A mechanism, w, is a triple (M, v, H)
where:

(a) M, called the message space, is a set of ad-
missible messages.

(b) w, called the equilibrium correspondence,
is a mapping from E to M, such that y(e)
is non-empty for each ecE.

(c) H, called the outcome function, is a map-
ping from M to A.

Given a mechanism #, the performance cor-
respondence, ¢, is a mapping from E to A,
defined by

¢(e)=[H{m):me y(e)]

A social goal correspondence, Q, is a map-

ping from E to A, such that Q(e) is non-empty
for each e in E.

A mechanism n realizes the social goal Q
if o(e) C Q(e) for all e E. It is unbiased with
respect to the social goal Q if ¢{e) 2> Q(e).

A mechanism w=(M, vy, H) is privacy
preserving if there exist correspondence v,
from E; to M for iel, such that

yie)= Q[ vi(e)

for each ¢ in E. (That is, v is a »coordinate
correspondence»), A mechanism which is
privacy preserving will be called a decentral-
ized mechanism. We will be concerned only
with decentralized mechanisms in what fol-
lows.

Given the formal definitions, one can turn
to a discussion of how a decentralized mech-
anism is supposed to operate: this is referred
to as the verification scenario. Paraphrasing
from Hurwicz (1986), the participants in the
economy are presented with a proposed mes-
sage m in M. Agent i accepts the message (says
»yes») if and only if m is in y;(e). Notice
that the response of agent i depends only on
the message received, and the information
about its own characteristic, e, rather than
the entire environment, e. This »privacy pre-
serving» property is an essential part of infor-
mational decentralization, an aspect we wish
to emphasize in this study. A message m is
declared an equilibrium message if and only
if every agent accepts the message; that is, m
is in y(e).

We now make two brief remarks regarding
the »equilibrium message» discussed in the
above paragraph. First, if m is not in y;{e),
agent i rejects the message (says »no»). In this
case, a new message must be proposed and the
process continued until one is found for which
everyone says »yes». How an equilibrium
message is found is a topic of considerable im-
portance. However, we will not be directly
concerned with it here. [For discussions of
message adjustment processes, using »re-
sponse functions» of agents, vielding an equi-
librium message in the limit, see Hurwicz
(1986}; for an alternative approach, see Reiter
{1989)].

Second, it is worth noting that in this in-
terpretation of the operation of the mecha-
nism, there is a limited role of the agent,
namely accepting or rejecting a proposed mes-
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sage, given the correspondence v,. The
choice of these correspondences as an out-
come of the pursuit of self interest (incentive
compatibility) is a topic which has been
studied in some detail in the literature. Again,
we will not be addressing this issue in what
follows. [For a discussion, where incentive
compatibility means that the response func-
tions y; of the agents have to constitute a
Nash equilibrium point of a non-cooperative
game, see Hurwicz (1972)].

We continue, now, with our discussion of
the operation of the mechanism. If m is an
equilibrium message, then the function H
specifies an equilibrium allocation, H{m), of
this economy, an an outcome of this mecha-
nism. Thus, it is to be understood that this
equilibrium allocation is actually carried out.
The »performance» of the mechanism can,
therefore, be summarized by the set of its
equilibrium allocations; this is precisely con-
veyed by the performance correspondence, ¢.

The social goal correspondence, Q, speci-
fies a set of allocations judged to be »socially
desirable». It is important to note that this
correspondence is defined independent of any
mechanism under consideration. For each
specification of an environment e £ E, Q speci-
fies a non-empty set of allocations ag A, the
attainment of which should be the aim of a
constructed mechanism.

The performance of a mechanism is evalu-
ated with respect to the social goal correspon-
dence. If every equilibrium allocation of the
mechanisms is a socially desirable allocation,
then the mechanism »realizes» the social goal.
It is, of course, possible for a mechanism to
realize a social goal but be »biased» in the
sense that some socially desirable allocations
cannot be attained by the mechanism. If every
socially desirable allocation is an equilibrium
allocation of the mechanism, the mechanism
is »unbiased» with respect to the social goal.

3. An Aggregative Model of
Intertemporal Allocation

3.1 Notation

The set of non-negative integers is denoted
by N=1{0, 1, 2,...}; R, (resp. R, ,) denotes
the set of non-negative reals (resp. positive
reals). A sequence x=(x,) of reals is non-
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negative (written x=0}if x, e R, foralltin
N; o is strictly positive (written x>>0) if
xelR,, forall t in N; x is positive (written
x>0) if x is non-negative and x, e R, , for
some t. For any two infinite sequences
x=(x) and ¥’ =(x"), x=(resp. >, >>), x*if
x—x' = {resp. >, >>) 0. The set of all non-
negative (resp. positive, strictly positive} se-
quences is denoted by S, (resp. S, S..). The
T-fold Cartesian product of A with itself
is written AT (when T is infinite, we write
AN, Given any infinite sequence x, xM™
denotes the (T + 1) vector whose elements are
the first (T + 1) elements of x.

3.2 A Stationary Economy

Consider an infinite horizon, one-good
model with a stationary rechnology described
by a gross output function f which satisfies
the following regularity conditions [F]:

[F.1] £: R, — R, is continuous on R ;
[F.2] f({) =0,
[¥.3] f(x) is twice differentiable at x>0, with
Px)>0 and £°(x)<0.
[F4] (@) lim f'Xx)=c ; lim =0
x10 x1 e

(b) f(X)— o as X~ o

Note that the assumptions imply that f is
strictly increasing and strictly concave on
R,.

Given the initial stock y>0, a program
of resource allocation [briefly, »a program
(%, ¥, c)»] from y consists of non-negative se-
quences of inputs x=(x), stocks y=(y,) and
consumptions c=(c)} satisfying

3.1) Y=V, ¥,.,=f(x) and y,=x,+¢,
for t=0

Observe that the introduction of & production
lag implies that the decision in period t on how
much to consume {choice of ¢) and how
much to use as input {choice of x;) limits the
choice possibilities of all periods subsequent
to period t, whereas such decisions have no
bearing on choices made in the preceding pe-
riods.

Corresponding to any f satisfying (F.1}—
(F.4) there exists a unigue number X >0, such
that
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(3.2) ) FEK=K;
(i) fG0>x for 0<x<K;
(il fe<x for x>K

Indeed for any program (x,y,¢) from y>0
one has

(3.3) v=K@¥)=max K,y) fort=0

We refer to K as the maximum sustainable
stock given f.

Given any 8 satisfying 0< 8«1, there is a
unique positive solution xj to the equation

5 (x) =1

Write y; = f(x2), ci = yi—x;. When & =1
(resp. 0<8 < 1), we refer to (x3, v, i) as the
golden rule (resp. modified golden rule) input,
stock and consumption. Given 0<8=<1, one
can define the stationary program (x°, v*, ¢*)
by
(GR) X=X}, y;=Y; ¢;=c; forteN
When 6 =1 (resp. 0<86<1), this stationary
program (GR) is referred to as the golden
(resp. modified golden) rule program.
Alternative feasible programs are evaluated
according to some criterion which reflects »so-
cial goals». We shall review results on realiz-
ing some well-known criteria.

3.3 Efficiency

A program (%, ¥, ¢) from y>0 is efficient
if there is no program (x’, v, ¢’} from the
same initial stock y such that ¢/ =c¢, for all
t=0 and ¢ >c, for some t. It is easy to see
that there are infinitely many efficient pro-
grams from any y>0.

Characterization of efficient programs in
terms of shadow prices was the central theme
of Malinvaud (1953, 1961). Let us define an
intertemporal profit maximizing program
from vy as a sequence (x,v,¢, p) such that
(x,y,¢) is a program from y, p=(p) is a
positive sequence, and for all t& N,

M) poy fx)—px 2P, F(X)—px
for x=0

Here, p, is interpreted as the discounted price

of the goed in period t. The prices p=(p,)
are said to ’support’ the program (x, y, ¢) and
will be called Malinvaud prices. Since the se-
quence p is assumed positive, p, is positive
(using (M) and the assumption that f is strict-
ly increasing on IR, ). If the input sequence
x={(x) is strictly positive so is the price se-
guence p=(p,) and one derives the familiar
‘marginal’ condition:

(3 4) P:. ]f’(xl) =P

Example 3.1

Consider the sequence (X, 9, €} from y>0
defined by:

y=y0=)ﬁ((}: ?g=5\(|=f(ﬁz—l)
fort=1, =0
for t=0

This is clearly a program: it is calied the pro-
gram of pure accumulation because it
prescribes zero consumption in all periods.
Since y >0, this program is not efficient. How-
ever, the input sequence R being strictly posi-
tive, one can set P,=1, and define p,,=
(%) D, for all t=0. This sequence p gives us
Malinvaud prices relative to which the pro-
gram of pure accumulation satisfies the con-
dition (M).

In fact, one can use the above reasoning to
establish a fairly general resuit in our frame-
work.

Proposition 3.1:

If &, v,¢) is a program from y>0, then
there exists a sequence p=(p,} of discounted
prices such that (x, y, ¢, p) is an intertemporal
brofit maximizing program from y,

Proof:

To see this, note that if x=(x) is a strictly
positive sequence, then we can define a se-
quence p=(p,) as follows:

(3.5) Po= I, Besr= [pl‘/f’(xl)]

It follows from concavity of f that given any
xz=0and teN, f(x)-fG)=x)(x~x%), so
that p,., [f(x) —£(x)]<p, (x~x), using (3.5).
This yields condition (M) after transposing
terms.

If x =(x,) is not a strictly positive sequence,
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let T=0 be the first period for which x;=0.
Then x,=0 for t="T by (F.2). In this case,
one can define p=(p,) as follows:

po=1,p,=0 fort=T+1

P =p/T(x) for0=t=T-—-1 if T=1
It is easy to check, as above, that (x,y,¢, p)
is an intertemporal profit maximizing pro-
gram.//

Remark:

Consider a production function, f, which
satisfies (F.1), (F.2) and is nondecreasing and
concave on IR, . Then, we have what might
be called a »classical» environment, since the
technology set {(x, ¥) e R : y={(x)} would be
closed, convex and allow free-disposal. In this
more general framework, Proposition 3.1 is
not valid. Indeed, even if we restrict the pro-
gram (X, ¥, ¢) in question to be efficient, the
result fails to hold. This was demonstrated
convineingly by McFadden (1975), who con-
structed an example of an efficient program,
whose only supporting prices {in the sense of
(M}) is the null sequence.

Example 3.2 (McFadden)
Suppose that the production function is:

12-2(1—-x) if0=x=1
(.6 f)= 2 if x=1

Let J be the set of time periods t,=3", n=
1,2,3....Define the sequence (x, v, ¢) as fol-
fows:

(3.7 x=1iftel], x,=(1/2)if tg]
y,=2ift—1gl, y,=(3/2)
ift—1gJ
c,=(1/2)ifte], =1 t—1¢&],
¢=0B/2)ift—1e}

One can show (see McFadden (1973)) that
(x,y,c) is an efficient program from y=
(3/2). Since x is strictly positive and £’(x,)=0
infinitely often, the relationship p,,,
f’(x) =p, characterizing intertemporal profit
maximization can hold only with p=0.

In McFadden’s example, f satisfies [F.1],
[F.2]. Furthermore, fis concave and continu-
ously differentiable. However, f(x}=0 at
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x= I, so it violates [F.3]. In fact what is cru-
cial for the validity of Proposition 3.1 {(other
than continuity and concavity of £} is the fact
that f is strictly increasing (our proof is made
easier by assuming in addition that f is
differentiable, but this is not essential for the
result). In a multisectoral model, this condi-
tion translates to what Malinvaud (1953) has
called the »non-tightness» condition.

Examples 3.1 and 3.2 indicate two startling
possibilities in infinite horizon economies:
even in »classical» environments intertem-
poral profit maximization (M) in every peri-
od does not guarantee efficiency; and an ef-
ficient program need not have a system of
Malinvaud prices at which such a profit max-
imization condition (M) can be shown to hoid.

Thus the economic implications of the »du-
ality» results on productive efficiency and sup-
porting prices [summarized, for example, by
Koopmans (1957, pp. 83—92)] neced reap-
praisal as we make a transition from the fi-
nite to the infinite horizon. Perhaps the most
important result in this direction is the follow-
ing one, due to Malinvaud (1953),

Proposition 3.2 (Malinvaud)
Suppose (%, v, ¢, p) is an intertemporal prof-

it maximizing program from y >0, satisfving
p>0 for t=0, and
(IF) Bm px=0
t1ea
Then (x,Y, c) is an efficient program from ¥

Proof:
To see this, let (X,¥,¢) be any program
from y. Now for any finite T,

38 TpE-c)= EplG-R) -]

T-1
= l§0 E(pt+ 1 f(it) - p|xl)
- (pl +1 f(xt) - plxl)]
— DXy + PrXr
Using the condition {M) for t=0,...,T~1

and non-negativity of pX,

T
(3 9) EO B (E( - Ct) =Pr¥r
1=
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If (x, v, ¢} is not efficient, there is a program
(x’,¥,¢’) from y such that ¢ =¢, for all
t>0, and c!=c,+m, m>0 for some period
t. Hence, for all T=1

T
(3.10) 0<mp. = £ p(c]—c)
1=0

By combining (3.9), (3.10) and condition (IF),
we get a contradiction, This proves that
{x, v, ) is efficient.//

The important condition in Proposition 3.2
is that the present value of input becomes in-
significant over time. It is commonly referred
to as the insignificant future or the transver-
sality condition.

In his comments on Propositions 3.1 and
3.2, Koopmans observed the following: »By
giving sufficiently free rein to out imagination
we can still visualize» the condition (M) of in-
tertemporal profit maximization »as being
satisfied through a decentralization of deci-
sions among an infinite number of producers,
each in charge of that part of the program
relating to one future period. A further de-
centralization among many contemporaneous
producers within each period can also be
visualized. But even at this level of abstrac-
tion, it is difficult to see how the task of
meeting condition» (IF) can be pinned down
on any particular decision maker. »This is a
new condition, to which there is no counter-
part in the finite models.» It should be stressed
that if an agent in a particular period is al-
lowed to observe only a finite number of
prices and quantities, it is never able to check
whether or not condition (IF) is satisfied; of
course, even with the observation of an in-
finite subsequence of (px,), it may not be
possible to verify (IF).

At this juncture we would like to comment
upon an alternative approach to study the
relationship between efficiency (or Pareto op-
timality) and value maximization with an in-
finite dimensional commodity space. With a
single good in each period t, one can formal-
ly identify the commodity space (see Debreu
(1959)) with the linear space S of all real se-
quences. In fact, in view of (3.3), one can re-
strict one’s attention to 1., the linear space
of all bounded real sequences. For any ele-
ment x=(x,) in |, define the norm ||x}| as:

(3.11y lixl =sup Ix]

The set of all linear functionals continuous
with respect to the »sup norm» topology is
denoted by Ip,. An element p in I, is non-
negative if p(x)=0 for all x=0.

Given a program (x, v, ¢) from some y> 0,
let us call c=(¢) a consumption program
from y. Denote the set of all consumption pro-
grams from y>0 by C. Then C is a nonemp-
ty convex set of I,. A separation argument
can be invoked (see Radner (1967)) to prove
the following result,

Proposition 3.3

Let (%,¥,¢) be an efficient program from
y>0. Then there is a non-zero, non-negative
p in 13, such that

(3.12) p©@z=plc)

forall cin C.

While the value maximization property
(3.12) is undoubtedly of some interest, one ob-
vious difficulty is that the continuous linear
functional p need not be representable by a
sequence p={p) with respect to which the
period-by-period rule of profit maximization
can be formulated. Indeed, it is known that
if p isin I3, then for any c in I,

(3.13) p(0)= éoplc[ + P (0)

(=3
where (p,) is a summable sequence { £ |p,| is
t=0

finite) and p., {c) is obtained by integrating ¢
with respect to a purely finitely additive mea-
sure on N (see Radner (1967), Majumdar
(1970)). Even when p is non-negative, it is
possible that p,=0 for all te N. Moreover,
P (€)=p., (c’) whenever ¢ and ¢’ differ only
over a finite number of time periods. Thus,
the valuation rules (3.13) cannot be easily in-
terpreted or implemented in the context of
designing an intertemporally decentralized re-
source allocation mechanism (see Malinvaud
(1961)).

Example 3.3

Consider the golden rule program {GR) de-
fined above. With § =1, we simply drop the
subscript & and write (x*, y*,¢’). One can
verify directly that it is an efficient program.
Moreover, at the stationary price sequence
p'={p]) where p; =1 for t ¢ N, it satisfies the
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condition (M) of intertemporal profit maximi-
zation. Observe that p;x; =x"> (. Hence, the
condition (IF) is not satisfied. Clearly p* is
not a summable sequence. Also, the non-
negative, non-zero linear functional p at which
¢ maximizes value (see (3.12)} has no as-
sociated sequence (p) in l,. In fact,

p(c) =p.(c)=c"

Also, for any feasible consumption program
c¢=(c,) such that lim ¢, exists,

ttoo

p(c)=lim ¢,
tio

In particular, p(c)=c* for all feasible con-
sumption programs c¢=(c,} such that lim ¢,

(R
.

=C.

3.4 Opiimality

In discussing the evaluation criterion known
as »optimality», one typically introduces a
utility function, u, from R, to R, and a dis-
count factor, &, satisfying 0<8=1. A pro-
gram (X, v, €) from y>0 is optimal if

(3.14) lim sup z 8 [u(e}—u(€)]=0
T—= 1=0

for every program (x, v, ¢) from y. When
& < 1, so that future utilities are given smaller
weights than current ones, the optimality ex-
ercise is referred to as the »discounted» case;
when § =1, we refer to the exercise as the »un-
discounted» or »Ramsey» case. In what fol-
lows we examine the problem of existence of
optimal programs in each case, when the util-
ity function, u, satisfies:

(U.1) u is continuous on R,

(U.2) u is twice differentiable at ¢>0 with
u'c)>0 and u’(c)=0.

Clearly, (U.1}, (U.2) imply that u is concave
and strictly increasing on R, . In what fol-
Iows, we normalize u(0)=0.

3.4.1 The Discounted Case

When 0< &< 1, boundedness of the set of
programs from any y=0 [recall (3.3)], and
continuity of the utility and production func-
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tions [(U.1) and (F.1)] can be exploited to ob-
tain the existence of an optimal program.
Proposition 3.3:

There is a unique optimal program from
any y=0,

Proof:

If (x,v,c¢) is any program from y, then
O=c=K(y)=max (K, y) for all t =0, and so
O=u@®=u(c)<uE () for t=0. Denote
u(K(y)) by b. Then, clearly, 0=u{c)}<b for
t=0, and so for every T=1

T 8tu(c)<b/(1—8)
t=0

Since u(c)=0 for t=0, we know that

T su(c)= lim
(=90 T

— o

T
% 8l
t1=0

exists and cannot exceed [b/(1—8)]. Let a=
sup{ & &u(c): (x, v, c) is a program from y].
t=0
Choose a sequence of programs (x°, y*, ¢
from y such that

(3.15) T &u(c)=a—(1/n)
t=9 forn=1,2,3,...
Using (3.3), continuity of f, and the Cantor
diagonal method, there is a program (X, ¥, ¢}
from y, and a subsequence of n (retain nota-
tion) such that for t=0, ’
(3.16) (¢, y*, ¢ - (X, ¥, C) asn— oo
We claim that (X,¥,T) is an optimal pro-

gram from y. If the claim is false, then we can
find £>0 such that

§ du{c)<a—e
1=0

Pick T such that 8™!'[(b/1 —8)] < (e/3). Using
(3.16), and the continuity of u, we can find
i, such that for all n=m,

T
T Su(c) < T 8u(e) +(/3)
1=0 1=0

Thus, for all n=n, we get
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T
}TZ du(ch= Z du(eh)+ 8™ [(b/1 - 8)]
t=0 t=0
T
< L 8uleM+(e/3)
t=0

< T 8u@E)+ (28/3)
=0
<a—(e/3)

But this leads to a contradiction to (3.15)
for n>max [f, (3/¢)]. This establishes our
claim. Uniqueness of the optimal program fol-
lows from the strict concavity of f.//

3.4.2 The Undiscounted Case

When 8§ =1, the method of proving the ex-
istence of an optimal program is a more in-
volved one; the pay-off, however, is that
several interesting results are also established
simultaneously.

The focus of attention here is the golden-
rule program {(GR) defined above; to simpli-
fy notation we drop the subscript 8. If we de-
fine p*=u’(c"), we can easily check [using the
concacity of f and u] that

@17 ule)—pcr=ulc)—pe for c=0
pfx}—px'=pfx)—p'x for x=0

At any c=0, define the consumption value
loss at p* as:

a(cy=[u{c)—p'c’]~[uf{c)—p-c}

Similarly, at any x=0, define the Joss of in-
tertemporal profit at p* as:

Bx)=[pf(x)—px]—{pTx)—px].

Using (3.17), a(c)=0 for allc=0 and B (x) =0
for all x=0. Of particular interest for the se-
quel is the following »value loss lemmas:

Lemma 3.1

Let K be a given positive number. For any
e>0, there is 3 >0, such that if 0=x =<K and
Ix—~x'| =g, then B(x)=R.

Proof:

If the claim is false, there is €>0 and
a sequence x" such that 0=x"=K and
Ix"—x*| = ¢, but B(x" —0 as n— o. Con-
sider a subsequence of x* [retain notation]

converging to some % Then 0=%<K and
|%~x*] = e. Also, since B{x")— 0 and x" - %,
continuity of f implies that B(X)=0. But,
then, by strict concavity of f, for x=(1/2)
X+(1/2) x*, we would have B(x)<(, a con-
tradiction.//

Estimates of the sum of all value losses on
a program can be obtained by using the fol-
lowing result, the proof of which is obvious
and therefore omitted.

Lemma 3.2

If(x,y,c)isa program fromy >0, then for
each finite T=1,

G18) X E@-u)=pG-y)
— P (xy—x7) ~ éﬂa(ct)— éoﬁ(xa

A program (X, v, c) from y>0 is good if
there exists a real number B, such that

T
Elu(c)—ulc)]=B forall T=0
1=0

and it is bad if

i [u{fc)—u{c)]— — asT—
1=0

It can be shown, following Gale {1967), that
given any y >0, the set of good and bad pro-
grams from y exhaust the set of a// programs
from y. Furthermore, the set of good pro-
grams is non-empty.

Lemma 3.3

There exists a good program from every
y>0. If a program from y>0 is not good, it
is bad.

Proof:

Consider the pure accumulation program
(%, ¥, &) from y (recall Example 3.1). It is not
difficult to show that % — K as t — o, where
K is defined in (3.2}. Since K>x", & >x" for
all t sufficiently large. Let 1 be the first pe-
riod such that 8. =x". Consider the sequence
(x,v.c¢) defined by: y,=y; x,=min (&, x),
V. =f(x) and ¢,=y,—x for t=0. Then
{(x,v,¢) is clearly a program from y, and
¢,=c* for all t>1. Hence {x,y,¢) is a good
program.
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Suppose, next, that (x’, y°, ¢’) is a program
from y >0 which is not good. Then, given any
real number B, there is some T, such that

£ () ~u(e)] <B
=0

Using the fact that v/ s K(v) =max (K, y) for
t=0 [recall (3.3)], and Lemma 3.2, we also
have for all t>T

lz%}[u(c,’)—-u(c‘)}sp‘[K(y) +x7]

Thus, given any real number B, there is some
T, such that for all T>T,

2 [@(E@)—u(@)] <p'KE)+x1+B

which shows that (x’, y’,¢") is bad.//

In view of the previous result, our search
for an optimal program can be confined to the
class of good programs. Good programs con-
verge to the golden-rule in input, stock and
consumption levels, a result usually referred
to as the »turnpike» property.

Lemma 3.4

Let (x,y,c) be any good program from
y>0. Then (x,v,¢c)— (X", y,c)ast— oo,

Proof:

Suppose x, does not converge to x'. Then
there is some £> 0, and a subsequence of pe-
riods for which Ix,—x'| = €. Using Lemma
3.1 and defining K=K({y), there is p>0 such
that B(x)=p for this subsequence of periods.
Using Lemma 3.2, it then follows that (x, y, ¢)
is not good. Thus, X, — X* as t - o=, conse-
quently, y,=f(x,.,) ~f(x)=vy" as t — oo, and
¢=¥,—X—~ ¥ —x)=c ast—co.//

Lemma 3.5
If (x, v, ©) Is any good program from y >0,

T
Hm X [u{c)—u(c)] exists
Tlte t=0

Proof:
Since (x, v, ¢} is good, there is a real num-
ber B such that for all T=0
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(3.19) I [u(c)-u()]=B

Using Lemma 3.2 and (3.19), we have for
T=0,

T T
(3.20) Zolc)+ ZBE)<p'y+p'x'—B
t=0 1=0

Since afc)=0 and B(x)=0 for all t=0,
(3.20) implies that

(32D Lix, ¥, 9= lim {2 a@+ = pe]

exists. Also, Lemma 3.4 implies that p'x, —
p'x* as T — oo, Using this and (3.21) in Lem-
ma 3.2, one can take the limit in (3.18) to ob-
tain

(3.22) i [uc)—u(c)]=py+px
~Lx,v,¢0

This establishes the lemma.//
We can now finally prove the result on the
existence of an optimal program.

Proposition 3.4;

There is a unique optimal program from
any y>0.

Proof: _

Let L(y)=inf [L.(x, v, ¢): (X, v, ¢) is a good
program from y]. Now, take a sequence
(x, y*, ¢ of good programs from y such
that

(3.23) Lix", vy, M =L{y)+(/n)
forn=1,2,3,...

Using (3.3), continuity of f, and the Cantor
diagonal method, there is a program (X, ¥, ©)
from y, and 4 subsequence of n (retain nota-
tion) such that for t=0,

(.24) &, ¥, )~ (Ku ¥ T) asn— oo

We claim that (X,¥,©) is good and
L(Z,¥,c)=L(y). If the claim is false, then
we can find a positive integer T, and >0,
such that
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(325 [La@)+ X BE)I=LM)+e
t=0 1=0

Using (3.24) and (3.25), and the continuity of
f and u, we can find a positive integer n,
such that for all n=r,

(3.26) [ X ae)+ X B2 L) +(E/2)
t=90 1=0

Clearly (3.26) implies that for all n=1,
L(x", y°, c) =L {y) + (/2), which contradicts
(3.23) for n>max [H, (2/8)]. This establishes
our claim.

Using Lemma 3.3 and (3.22), it follows
readily that (%, ¥,€) is an optimal program
from y. The unigueness of the optimal pro-
gram follows from the strict concavity of f.//

3.4.3 Value and Policy Functions

Given Propositions 2.2 and 3.4, we can
present an elementary treatment of the con-
cepts of »value» and »policy» functions,
which are prominent in the dynamic program-
ming approach to intertemporal optimality.

When 0< &< 1, one can define a value func-
tion, V: R, — R by

(G270 V()= £ 8 u(@)
1=0

where (%, ¥, ) is the optimal program from
y=0. When 8 =1, one can similarly define a
value function, V: R, , — IR by

(3.28) V(y)= t;io[u(at)—u(c')]

where (X, ¥, T) is the optimal program from

Since there is a unique optimal program (in
both the discounted and undiscounted cases)
from every y=>0, one can define an (optimal
consumption) policy function, g: R_. — R
by

(3.29) g(y)=¢

where (X, ¥, ©) is the optimal program from
y. It is easily checked that this definition also
implies that for all t=0, ¢, =g(¥,).

In what follows, we state some of the basic
properties of the value and policy functions.

Lemma 3.6:

The value function, V, is increasing, strict-
Iy concave and continuous on R . ; the poli-
oy function, g, is continuous on IR, ,.

While the strict concavity and continuity of
the value function follow directly from the
strict concavity of f, the continuity of the poli-
cy function requires an application of a max-
imum theorem,

Some additional properties of V and g can
be explored in two important subcases of the
class of utility function allowed by (U.1) and
(U.2): (i) the strictly concave case; (ii} the
linear case.

Strictly Concave Utility Function
If we retain (U.1)}, strengthen (U.2) to:

(U.2*) u is twice differentiable at ¢>0, with
w'(c)>0, u”’(c)<0 and assume, in addition:

(U.3) v (cy)— 0 asc—0

then we refer to the sub-case, for convenience,
as the »strictly concave casen. In this sub-case
the following basic relationship between the
value and policy functions can be established.

Lemma 3.7:

In the strictly concave case (i) The value
Junction, V, is differentiable on R, _; (ii) the
policy function, g, satisfies 0< g{y)<y for all
y>0; and (iif) V'{(y)=u(g(v}) for all y>0.

Linear Utility Function

If u(c)=c for all c=0 (which, of course,
satisfies (U.1) and (U.2) we refer to the sub-
case as the »linear case». In this sub-case, it
is, in fact, possible to describe the policy func-
tion, g, explicitly.

Lemma 3.8:

In the linear case, given 0<8=<1, the poli-
cy function, g satisfies

g(y)=max(y—x;, 0) for all y>0

where X3 is the golden-rule (6= 1) or modi-
fied golden-rule (0< 8 <1} input.
Proof:

Given y>0 and 0<8=1, define the se-
quence (i: v, E) by yﬂ =Y, VH-] =min (f(?[),
f(x3)) for t=0, €, =g(¥) for t=0 and
X,=¥,—¢t, for t=0. It can be checked that
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this is a program from y. We have to show
that this is an optimal program from y.

Let (%, ¥, ¢) be any program from y, We
consider two cases: (i) y=x;, (i) y<xi.

Case (i). We have for any T,
T T-1
Z &(c,—C)= % 8'{{&f(x)—x]
t=0 1=9
- [8F (%) — %3]} + 87 (x5 — %)

since y,=%,=y, and x,=%; for t=0. Now,
for all x=0, &6f(x) —x=<&f(x})—x;, using the
concavity of f and 6{’(x;)=1. Thus, for any
T,

(3.30) T 8c,—T) =< 8T (xi—xy)
t=0G

If 0< &<« 1, the right hand side expression in
(3.30) converges to zero as T — oo, establish-
ing the optimality of (X,¥,¢). If 6=1, and
(%, v,¢) is good, X;—x* as T— o0, so that

T
(3.31) lim sup X &'(c,—C)=0
T— o t=0
If 6=1and (x, ¥, ¢} is bad, then (3.31) follows
directly from the definition of a bad program,
and the fact that ¢, =¢" for t=1. This estab-
lishes the optimality of (X, ¥,T).

Cuase (if). Consider the pure accumulation
program (%, ¥, &) from y {recall example 3.1).
We know that §, ~K>x3ast~ oo, Let 121
be the first period for which ¥ =x;. Then,
clearly, y,=¢ =% =% and ¢, =0 for t=0,...,
1—1; and ¥, =x; for t=<. Thus, for any
T>1, we get

T 8 —) = I ' ([8£(x) —x] — [5F (k) — &.])
t=0 t=0
+ T 887(x) —x] = 187 (k)3
+ 8T (x5 —x%p)

As noted in Case (i), for all x=0, [8f(x)} —x]
=[86f(x) —x;]. Also, for t=0,..., 1—1,
8f(x) —x, = 8f (%) —X,, since [8f(x)—x] is in-
creasing for 0=x<x;and X, =x fort=0,...,
7—1. Thus, for T>1,
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T
Ly (C: _61) =§&' (X:S—XT)
=0

Now, repeating the argument used in case (i),
(x,v,¢) is optimal.//

4, On the Optimality of Competitive
Programs

The notion of a competitive program has
been central to the discussion of the role of
prices in guiding intertemporal resource allo-
cation.

Let us define a competitive program from
y as a sequence (X, ¥, ¢, p) such that (x, v, ¢)
is a program from y, and p=(p,) is a positive
sequence of prices satisfying for all ts N,
G) &ule)—pe=dule)—pge

for all c=0
(M) Pis 1f(xz) =P =P, 1f(X) — B
for all x=0

The second condition (M) was introduced
earlier in our discussion of efficiency. The first
condition (G) can be interpreted in terms of
constrained utility maximization, One can
think of the conditions (G) and (M) in terms
of a separation of consumption and produc-
tion decisions by means of a price system, the
theme that pervades the masterly exposition
of a Robinson Crusoe economy by Koopmans
(1957). We refer to the sequence p=(p,) as a
system of competitive prices supporting the
program (X,y,c). [In the literature, these
prices are also sometimes called »shadowy» or
»stimulating» prices].

Example 4.1;

Consider, for 0<8=<1, the program
(x',y",¢*) defined by (GR). Define a se-
quence p*=(p;) by p;=81’(c;) for t=0. It
Is easy to check that (x*,y*,¢’, p%) is a com-
petitive program from y;.

Our interest in competitive programs is nat-
urally due to the following basic result.

Proposition 4.1:

If (_"}'f, ¥.C, D) IS a competitive program
Jrom >0, then (X, ¥, T) is optimal if
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(IF) lim pX=0 [when 0<&<1]
{t— oo

(BCV) sup pPX.<co [when §=1]
t=0

Proof:

Let (%, v, ¢) be a program from any y>0.
Using (G) and (M), one gets for any T=1,

4.1)

T T
Z8u (c)—u€)l= Zp,(c,~T)
1= t=d)

= -:E_;; {[ﬁw lf(xt) _I_)txt] - Ef’w 1 f(it) _I_)tit]}

+Pr(&Er ~%x0) + B (Y~
=P Er—Xp) + Py =)

Consider, first, the case 0<8&<1. Using
(4.1}, if (x’,¥’,¢’) is any program from ¥,
then

T T
X Su{e))— X 8u(C)<D.xr
t=0 t=0

The left-hand side expressions have limits (see
Section [I1.d.1), and (IF) ensures that the limit
of the right-hand side is zero. Hence,

¥ sue)< E suE)
t=0C t=0

establishing the optimality of (%, ¥, ©).
Consider, next, the case 6=1. Using (4.1),

T
I [u(e) —u @l =Bk +Boy’
for all T=1

Using (BCV), it follows that (X, 7, is
good, and so by Lemma 3.4, we have (%, ¥,
T)—(x*, ¥y, ¢} as t— oo, This fact, and
(BCV) imply that there is some real number
A, such that p,<A for t=0.

If (x’, ¥, ¢’) is any program from ¥, then
using (4.1), one gets for all T=1

4.2) jﬂ[u(c:)murc(nsra?@—x;)

If (x*, ¥’, ) is good, then x; —x" as T — oo.

Also, X;—x"as T— oo, and 0=<p;=<A for
all T. Using these facts in (4.2) we get

4.3) limsup I [u(c)-u(@)]=<0
T—te 1=0

If (x*, y°, ¢’} is bad, then (4.3) follows direct-
ly from the definition of a bad program, and
the fact that (%,¥,%) is a good program.//

Remark:

We have aiready encountered condition (IF)
in our discussion of efficiency. The condition
(BCV} is usually referred to in the literature
as the »bounded capital value» condition.

The relationship between competitive and
optimal programs can be explored further;
specifically, it is of considerable interest to
know that the converse of Proposition 4.1 is
also true. We will demonstrate this only for
the case of the »strictly concaves utility func-
tion [that is, when u satisfies (U.1), (U.2+%)
and (U.3)]. In the more general case, the proof
is considerably more involved.

We begin by noting the following charac-
terization of competitive programs in the
strictly concave case.

Lemma 4.1

Let (x,v, ¢) be g program from y> 0. There
is a positive price sequence (p) satisfying (G)
and (M) if and only if

@ x>0, y.>0,¢>0 fort=0
(RE) (1) v’ (c)=06u"(c, ) (x) fort=0

Proof:

(Necessity} Using {UJ.3) and (G), ¢,>0 for
t=0. Since y,=c¢, we get y,>0 for t=0.
Using (F.2), x,>0 for t=0. This establishes

@.

Using (G) and ¢,>0, one obtains
p=8uw(c) fort=0
Using (M) and x,>0, one obtains
p..F&)=p fort=0
((;F;mbining the above two equations establishes
if).
(Sufficiency) Let p,=84W’(c) for t=0. This
91
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defines a positive price sequence, using (i}.
Now, using (ii), one obtains
4.4) p.fx)=p, fort=0

Given any t =0, and ¢ = 0 concavity of u leads
{o

& fu (C) —u (Ct)] =8’ (C:) {c— cl) =D {c~ Ct)

so that (G) follows by transposing terms.
Given any t=0 and x= 0, concavity of f leads
{o

Pist () "'f(xt)} =Ds lf’(xr)(x - x:) = pl(x _Xt)

using (4.4). Thus (M) follows by transposing
terms.//

Remark:

The condition (RE}, known as the Ramsey-
Euler condition, asserts the equality of the
marginal product of input with the intertem-
peral marginal rate of substitution on the con-
sumption side.

Now, we are in a position to establish a con-
verse of Proposition 4.1,

Proposition 4.2

Suppose (X,y,c) is an optimal program
Jrom ¥>0. Then there is a positive price se-
quence p=(p,) satisfving (G) and (M), and

(IF) lim px =0 [when 0<8<1]
-

(BCV) sup px, <o [when §=1]
=0

Proof:

Since (x, v, ¢) is optimal from ¥>0, 0<c,
<y, for all t=0, by using Lemma 3.7 (ii).
Using (F.2), x,>0 for t=0.

Since (x,vy,c¢) is optimal from ¥>0, for
each t=0, x, must maximize

W) =8y, —x}+ 8 u(f(®) —x.,)

among all x satisfying 0=x<y, and f(x)=
X,.1» Since ¢, >0 and ¢,,, >0, the maximum
is attained at an interior point. Thus,
W?’(x)=10, which can be written as

Sw(c)=8"1’(c,, NF'(x)
a2

Thus (x, v, ¢) satisfies (i) and (ii) of Lemma
4.1. Consequently, there is a positive price se-
quence p=(p,) satisfying (G) and (M). In
fact, using (G), and ¢, >0, we have

p=8W{c) fort=0
Using Lemma 3.7 (iii) we also get
(4.5) p=86V’(y) fort=0

Using the concavity of V and (4.5), we obtain
for any y>0

SV -V N=3V'(y)(y—v)
=py—v)

Thus for all t=0, and any y>0
(4.6) V() —py=dV{y)—py
Choosing y=(y./2) in (4.6), we get
47 (U/Dpy,s8VEI-VE/2]

If 0<é<l, V{y)=<uK{FN/(1—85)] and
V(y/2)=0 for t=0 [see Section IIl.d.1].
Then (4.7) yields condition (IF), since
0=x, =<y, for t=0.

If6=1, (x, ¥, c)is good (using Lemma 3.3)
and so X, —x*, ¥~y and ¢,—~c* as t—
(using Lemma 3.4). Thus, py,—w(c)y as
t — oo, This yields (BCV), since 0<x <y, for
t=0.//

When one is interested in attaining the op-
timal program through an intertemporally de-
centralized, price-guided system of decision
making, verification of the insignificant future
(IF) or the bounded capital value condition
{BCV) poses conceptual difficulties similar to
those raised by Koopmans that we have
recalled in the context of intertemporal effi-
ciency. The problem of desiging a ‘decentral-
izable rule’ for myopically behaving firms or
consumers continued to engage the attention
of researchers (see Kurz and Starrett (1970),
Starrett (1968)). However, significant progress
towards designing ‘decentralized’ resource al-
location mechanisms that can detect the long-
run inefficiency or non-optimality of competi-
tive programs through a sequence of period-
by-period ‘verifications’ was achieved only re-
cently. (Formal definitions of these concepts
are taken up in Section VI). We shall now re-
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view some »possibility» results on verifying
optimality of competitive programs reported
in the Symposium (on intertemporal decen-
tralization) in the Journal of Economic The-
ory (1988). We continue to focus on the case
where the utility function is »strictly concave»
[that is, u satisfies (U.1), (U.2*) and (U.3)].
The particular period-by-period verification
rule, which has figured prominently in this
literature, can be approached in the follow-
ing way.

An important monotonicity property of op-
timal programs (see Mitra (1979)) is the fol-
lowing: let (x, v, ¢) be optimal from y> 0 and
(x', ¥, ¢’) be optimal from v’ >0. If y>y,
one has:

4.8) x=x}, y=vy, ¢zc forallteN
Given 0<3=<], the stationary program
(x, y*, ¢*) defined in (GR) is optimal from
y;- 1t follows that if (x, v, ¢) is optimal from
¥, pi =06’ (c}), and p,=8&u’(c,), then

3 PE-py.—vy;)=0 forall teN.

Indeed, one can show that the condition (S)
completely identifies all competitive programs
that are optimal.

Proposition 4.3

A competitive program (x,v,c, p) from
y>0 is optimal if and only if

) E-~p)y.—y;)=0 forallteN

A sketch of an elementary proof [dealing with
both the discounted and undiscounted cases
in a single framework] is available in Majum-
dar (1987). An alternative characterization is
provided by:

Proposition 4.4
A competitive program (x,y,c,p) from
y>0 is optimal if and only if

4.9) x,.,Sx, whenever X, Z x}
JoralltsN

3. Role of Competitive Prices in
Achieving Optimality: Some
Further Results on the Strictly
Concave Case

In our one good framework, the results of
the previous section can be strengthened fur-
ther. In this section we want to point out that
there are alternatives to the condition (S) that
we discussed earlier that do not involve the
golden rule (or modified golden-rule) stock

¥3-
Lemma 5.1

Suppose (X,y,c,p) is a compelitive pro-
gram from yz (0, K).

() 1If, for some s=0, we havey,, >y, and
X, =X;, then X, >x% and y,. >y, for all
{=s.

(i) If, for some s=0, we havey,, <y, and
X =x3, then X, <%, and y, <y, for all
t=3.

Proof:

We will prove (i). Suppose for some s=0,
Yo >y, and x.=x;. Then 8 (x)=<1, and
using condition (RE) we get

w(e) =6 xJw(c,, y=u'(c,, )

so that ¢,=c¢,,,. Thus y,—x,=y,,, —x,,,>V.
~X.p USIDE Y, >y, This yields x,, >x,
and 50 y,.,=f(x,,)>f(x)=y,,,. Thus x,,,
=x; and ¥,,,>Y¥,,;. This step can be re-
peated to get x,,,>x, and y,,, >y, for all
tzs. The proof of (if) is similar.//

Given a competitive program (x,y,c, p)
from y & (0, K) define the current vatue price
sequence q=1(q,) hy

q,=(p./8) forteN

Now, consider the following period-by-period
verification rule:

(S,) (qna_qt)(Y”]—y,)SO fOFtSN

In contrast with the earlier condition (8), this
condition (S°) does not involve the explicit ap-

pearance of the golden-rule (or modified
golden-rule) stock y; or prices p;. We will
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show that a competitive program satisfies con-
dition (8°) if and only if it is optimal.

It is worth observing that a competitive pro-
gram (X, y, ¢, p) for y £ (0, K) satisfies (8°) if
and only if it satisfies

(8") (Q:=q) (X —x)=0 forteN

To see this, note that by condition (G) we get
forteN

B(C{) — Q< = !.I(CM :) — 4G4

u(cm)—qmcmzu(ct)—qwlcl

Adding the inequalities and transposing terms,
we get

(5.1 (QI+1_Q1)(Ct+i“CL)SO for te N

Thus if (87} is satisfied, adding the inequali-
ties in (S8””) and (5.1), one obtains (S%).

To go in the other direction, note that by
condition (M), we get for te N

8ql+lf(xt)_tht2 5qt+lf(xt+1) =X
6Ch+2f(xt+;)_Qz+ %= 5ql+2f(xt) Y2

Adding the inequalities and transposing terms,
we get

(5.2} S(QHZ"QHt)(Yz+2_yl+1)Z(qHl
_qt)(xnl""xl) forteN

Thus, if (8°) is satisfied, it follows from (5.2)
that (8"} is satisfied as well.

Lemma 5.2;

Suppose (x,y,c,p) is a competitive pro-
gram from ye(0, K}, which satisfies (S°).

() If, for some s=0, x,<x}, then x,, =X,
and ¥, =Y,.

(ii) If, for some s=0, x,>x;, then X, | =X,
and y,, <Y,

Proof:

We will prove {i). Suppose, for some s=0,
X, <X;. Then &f(x,)>1. Using condition
(RE), q,,,=[q/86f(x)]<q,. Using this in
(5’), one obtains y,, ; = y,; using this in (8},
one obtains x,,,=x,. The proof of (ii) is
similar.//

Using Lemmas 5.1 and 5.2 one can show
that a competitive program satisfying (S%)
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must converge to the golden rule (or modified
golden-rule).

Proposition 5.1:

Suppose (x,V,c,p) is a competitive pro-
gram from ye(0,K), which satisfies (8).
Then (X, ync)— (X5, ¥i, C3) as t — oo,

Proof:

Suppose y<y;. We claim that
(5.3) x<x; forteN
For if (5.3} is violated, let s be the first period
for which x,=x;. If s=0, we have y,,,=f(x)
=f(xg)=yi>y=y,. If s=1, we have x_,
<X;, and so v, =fx)=fEx)>{(x,_))=v..
Thus, in either case, y,,,>y.. Applying Lem-
ma 3.1, x,.,>x,=x; and y,,,>V¥,,;, which
contradicts Lemma 5.2. This establishes our
claim.

Using (5.3) and Lemma 5.2, we can
conclude that x,,,=x, and x,<x} for t=0.
Thus x converges to some X satisfving
0<X=x;<K, and [f(x,_,)—x,] converges to
[f{x)—X]>0. Using condition (RE), we get
8f'(x)=1, so that X=x;. Thus x, ~X; as t —
co; also, y.., =f(x)—f(x)=y; as t- oo;
and ¢, =y, —x,— (¥} —xf)=c as t — o, When
y=¥;, the proof is similar,//

Our main result can now be stated as fol-
lows;

Proposition 5.2

Suppose (x,y,c,p) Is a competitive pro-
gram from y € (0, K) which satisfies (S*). Then
(x,y, c} is an optimal program from y.

Proof:

If 8=1, Proposition 5.1 impHes that p,=
wic)—u'{c)=p" as t — oo. Also x,—~ X" as
t — co. Thus condition (BCV) is clearly satis-
fied, and (x, v, ¢) is optimal by Proposition
4.1,

If 0«8 <1, Proposition 5.1 implies that
q,=u’(c}—u’(cs) as t— oo, and so p,=8'q,
—Qast~— o, Also %, — x3, s0 condition (IF)
is clearly satisfied, and (x, v, ¢} is optimal by
Proposition 4.1.//

A converse of Proposition 5.2 can also be
established, and is presented below in the next
resuit.

Proposition 5.3
Suppose (x,y,c,p) is a competitive pro-
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gram from y € (0, K), such that (x, vy, c) is op-
timal from y. Then (x,y, ¢, p} satisfies (S').

Proaf:

Using Lemma 4.1, x>0, y,>0, ¢, >0 for
te N. Thus, condition (G) yields q,=u’(c)
for teN. Using Lemma 3.7, we also have
q.=V'(y,) for te N.

Since V is concave (by Lemma 3.6), we have
for any y>0, and te N,

V-V =VEXy-y)=q—-vy)

Transposing terms, we get for any y>0, and
teN

(5.4 Vi) -qy=Vy -aqy

Pick any s=0. Then using (5.4) for t=s, and
y=yS+1?

(5.5) V) —qY:= V(¥ ) —AYss,

Using (5.4) for t=s+1, and y=y,, we have

(5.6) V) —%uiYer1 2 V) — oy Ve

Adding (5.5) and (5.6) and transposing terms,

(QS%- I _qs) (ys+ 1 *YS)SO

Since s=0 was arbitrarily picked, this estab-
lishes condition (S°).//

6. Intertemporal Decentralized
Mechanisms

The framework introduced in Section I, in
our discussion of decentralized resource allo-
cation mechanisms, is a flexible one: it can be
formally adapted to the intertemporal context
of Section III, with some changes, as follows.
One can identify the set of agents, I, to be the
consumers and/or producers in the intertem-
poral economy over the infinite horizon. The
environment of each producer can be speci-
fied to be the set of production functions
introduced in Section III b. The initiai
producer’s environment can contain informa-
tion about the initial stock of the economy.
The environment of each consumer can be
specified to be the set of utility functions in-

troduced in Section IIT d. The space of allo-
cations, A, can be specified to be the space
in which programs will belong, namely S3.

»Intertemporal decentralized mechanisms»
can be thought of as decentralized mechan-
isms (in the sense of Section II) applied to the
above intertemporal framework. The social
goal correspondence can be defined to be the
set of efficient or optimal programs from the
given initial stock of the economy.

The important question then is whether one
can devise suitable intertemporal decentralized
mechanisms which realize the above social
goals. We now present some examples to il-
lustrate how this question can be answered,
by using our results on efficient and optimal
programs developed in the previous three sec-
tions. The examples also indicate precisely
how intertemporal decentralized mechanisms
can be constructed, an aspect we have deliber-
ately avoided discussing in detail so far, in
view of the unavoidable technicalities in-
volved.

Example 6.1:

The set of agents, I={t ¢ NJ. We think of
agent t as a »producer» living at period t. The
set of environments, E, is defined as follows.
Let E = [f: f satisfies (F.1) —(F.4)] for t=1;
let E,={(y,f):satisfies (F.1)~(F.4) and
vyeR,.]. Now E is defined as fy, f=):
yeR,, and f satisfies (F.1)—(F.4]. Thus

O
EC I1E, and our given environment is a
t=0

stationary one. Define the space of alloca-
tions, A to be §2.

The social goal correspondence is the map-
ping Q: E— A, defined by Q(e) ={(x, v, ¢):
(X, ¥, c) is an efficient program when the en-
vironment is e}.

Consider a mechanism #n=(M, vy, H) de-
fined as follows. First, the message space, M,
is S2 xS, with generic element written as
(%, ¥, ¢, p). Next, the equilibrium correspon-
dence v is defined as follows. For e, in E, let
Wo(e,)=[(x,y,¢,p) in M: x,+¢,=v,, ¥,=¥,
i =f(x,) and pf(x,) — pox, = p,f(x) —p,x for
all x=0}; for ¢, in E,, let w,(e)={(x, v, ¢, p)
in M: x,+c,=vy, ¥.,=f(x) and p.. ,f(x)}—
pX=p . fX)~px for all x=0} for t=1.
Now, given any e in E, y(e) is defined as

() w, (&,). Since there exists a program from

t=0

each y>0, Proposition 3.1 ensures that v is
95
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non-empty valued for each ¢ in E, as required.
Finally, the outcome function, H, is defined
as follows. For m={x, v, ¢, p) in M, H(m)=
(x,¥,c). Thus, H is a projection mapping
from M to A. The performance correspon-
dence, ¢ (e), is the set of programs from y, by
Proposition 3.1.

Clearly, the mechanism, m, is privacy
preserving by definition. It is unbiased by
Proposition 3.1, but in view of Example 3.1,
it does not realize the social goal of efficiency.

The example emphasizes the point that the
conditional of intertemporal profit maximi-
zation (see (M) in Section III) does not ensure
efficiency. In our framework, it does not re-
strict the class of programs at all.

Example 6.2

The set of agents, I=[{ty, t,):teNj. We
think of agent t; as a »producer» Robinson
living in period t, and t, as a »consumer»
Crusoe living in period t. The set of environ—
ments, E, is defined as follows. Let E =
{(f, 8): f satisfies (F.1)—(F.4), and § £ (0, 1]]
for t=1; let B, =y, f,8): ye R, ,, T satis-
fies (F. 1) (F. 4), and (0, 1]. Let B, = [u
R. —R such that u{c)=c for cs]R .} for
£>0. Now, E is defined as {(y, =, 8=, u®):
veR,,, fsatisfies (F.1)—(F.4), 88(0, 11],
and u: R, =R such that u(c)=c¢ for

ceR,}. Thus, EC 3 E, X I E,, and the
t=0 t=90

given environment is a stationary one. The
space of allocations, A, is S}.

The social goal correspondence is the map-
ping Q:E— A, defined by Q(e)={(x,y,¢):
(%,v,¢) is an optimal program, when the en-
vironment is e].

Consider a mechanism n=(M, v, H) de-
fined as follows. First, the message space, M,
Is S} xR, ., with generic element written as
%, v,¢c, xa) Next, the equilibrium correspon-
dence vy is defined as follows. For ¢, in E,,,
et Wy (€0) = [(X, ¥, <, %3) in M:x,+C,=ye,
Yo=Y, V1= f(xo) 5f’(XS) - 1 and C, = max (Yc)
— X5, O)] For e, in E,, let Y, (e[R) i, v,
c, Xa) in M: X+ =Y, ¥4y "f(xt)’ Sf’(xs)‘
1, and ¢, =max (yl %3, 0)f for t=1. For e_
in E, fet v, (e)=M for t=0. Now, defme

for e in E, y(e)= Iﬂwm el N [(30 Ve

(e, )]. Since there is a goiden rule (or modi-
fied golden-rule) input (see Section I11.b) and
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there is an optimal program from every y >0,
(see Section {II.d), Lemma 3.8 ensures that v
is non-empty valued for each e in E, as re-
quired. Finally, the outcome function, H, is
defined, for each m=(x, vy, ¢, x3) by H{m)
=(%, ¥, c}. Thus, H is a projection mapping
from M to A. The performance correspon-
dence, ¢(e), is the unique optimal program
from y (using Lemma 3.8).

The mechanism, 7, is privacy preserving by
definition, and it realizes the social goal of op-
timality.

A remark regarding the equilibrium cor-
respondence is worth making. The key idea
is that the optimal consumption policy func-
tion, g, for this social goal can be explicitly
written as

g(y)=max (y—x;, 0} for all y>0

where x; is the golden-rule (8 =1) or modi-
fied golden-rule (0< 6 < 1) input (Lemma 3.8).
Thus, to obtain a mechanism which realizes
the social goal, one can ask the producers to
verify whether c¢,=max (y,—x3, 0) for each
period. Since this involves x3, which is de-
fined as the solution to §f’(x3)=1, one can
ask producers in each period to calculate it,
using their knowledge of 8 and f, and then use
it in the above verification. Notice that con-
sumers are not asked to verify anything; their
role {given the linear utility function) is indeed
a limited one in this mechanism.

Example 6.3

The set of agents, 1, the space of alloca-
tions, A, and the sets, E_ (for t=0}, are de-
fined as in Example 6.2. "Let E =u:R, -
R, such that u satisfies (U.1), (U 2%) and
(U.3)}. Now, E is defined as [(y, f=, §=, u™):
vyeR,,, T satisfies (F.1}—(F.4), 8&(0, 1),
and u: R, — R satisfies (U.1), (U.2*) and
(U.3)]. The social goal is optimality.

Consider a mechanism m=(M, y, H) de-
fined as follows. First, the message space, M,
is $*, xR ., with generic element written as
{x, y, C, 4, X3, Y3 Ci» @7). Next, let y, (e,,) =
I(x Y, €, G, X3» Vi Chy G°) in M : Xo+ €0 = Yo,

=Y, 6Qlf,(xo) Qoo af’(xa) = 1 YS - f(x&)a
x,s+ea v, and (q,—q')(y,~y3)=0}. Fur.
ther, let w, (e, =[x, v, c, q, %}, ¥i, ¢i, @) in
M:x + ¢ =Y, ¥., =) 8q,.,'(x)=q,
8f'(xp) =1, yi=1(x3), x5+ c3=y3, and (q,—q")
(y,—y$)=<0} for tz1. For t=0, y, ()=
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[(X, Yy € O, X5s ¥5s Cho q’) in M : U’(Cl)=q,,
uw'(c})=q"]. Now define for e in E, w(e)=

El(jo Wi (€1 [ E:(jo ¥, (e, )] an optimal pro-

gram (X, y, ¢} from every y>0, Propositions
4.2 and 4.3 yield (p) such that (G), (M) and
(8) are satisfied. Defining (q) by q,= (p/&9)
for t=0, it can be checked using Lemma 4.1
that w'(c)=q, for t=0 and 8q,/’(x,_)=4a,_,
for t= 1. Thus, y{e) is non-empty valued as
required.

The outcome function, H, is defined
for each m=(x, y, ¢, q, X3, ¥ G5, Q7) by
H({m}=(x, v, ¢). Thus, H maps from M to A.
The performance correspondence, ¢ (e}, is the
unique optimal program from y, using Lem-
ma 4.1 and Porpositions 4.2 and 4.3,

The mechanism, =, is privacy-preserving by
definition, and it realizes the social goal of op-
timality.

The key idea used here is that optimal pro-
grams can be characterized by conditions {G),
(M) and (S) (besides feasibility). Thus, to ob-
tain a mechanism which realizes the social
goal, one can ask consumers to check (G) and
producers to check (M) and (8) and feasibili-
ty. Now (8) itself involves the golden-rule (or
modified golden-rule) stock, and price. While
one cannct aks producers by themselves to cal-
culate these (as we did in Example 6.2), we
can obtain them through a privacy-preserving
mechanism  involving consumers and
producers [by asking producers to check
8'(xp) =1, vi=1(x;) and x;+c;=y; and
asking consumers to check u’{ct}=q’]. The
magnitudes can then be used to check condi-
tion (S) for each period.

Example 6.4

The set of agents and space of allocations
are as described in Example 6.3. To define the
set of environments, let £>0 be a fixed real
ntumber, and k be another fixed real number
satisfying 0 <k <&. Define & =[f : f satisfies
(F.1)—(F.4) and f(K) =k, f(E)<&, fk)<1].
Let E,=[(f, 8):fe & and §¢(0, 1]} for
t=1; IetE ={(y, f, 8):ve(0,k), fe & and
¢ (0 11. Further let E, ={u:R, — R such
that u satisfies (U.1), (U 2+) and (U. 33
Now, E is defined as {(y, f*, 8=, u=):ye
0.k), fe #,8e(0,1], and u: R, — R satis-
fies (U.1), (U.2%) and (U.3)}]. The social goal
is optimality,

M. Majumdar and T. Mitra

Consider a mechanism = (M, y, H) de-
fined as follows. The message space is M=
84, with generic e}ement written  as
(x,y, ¢, q). Next, let w,, (e,)=[(x,y,¢,q) in
M: Xy +C _Ym yc‘"‘"‘y: .= ?{Xo)! 8cllf’(x )_
0p» and (q,— 40) (Y1 —¥.) =0]. Further, let y,,
(em) E(X %& Q) inM: Kt C =Y, Vi = f(xs)’
SQHlf (X|) Qs and (qt+l qz) (yl+l Y|)5O]
for t=1. For t=0, vy, (¢)={(x,y,¢,q) in

M:u{c)=q,]. Now, define \p(e)=[ﬁ Wy,
€ N1 v @I

Since there is an optimal program (x, v, )
from ye(0,k), Proposition 4.2 yields (p)
such that (G), (M) are satisfied. Defining (q)
by q,=({p /&%) for t=0, Lemma 4.1 can be
used to check that u’(c) =g, for t=0 and 8q,
f’(x,.)=q,_, for t=1. Proposition 5.3 en-
sures that condition (8°) is satisfied. Thus,
W (e) is non-empty valued as required.

The outcome function, H, is defined for
eachm=(x, y, ¢, ) by H(m)=(x, v, c). Thus
H maps M to A. The performance correspon-
dence, ¢{e}, is the unique optimal program
frem y, using Lemma 4.1 and Propositions
4.2 and 5.2.

The mechanism, r, is privacy preserving by
definition, and it realizes the social goal of op-
timality.

Since condition (8’) does not involve the
golden-rule (or modified golden-rule) stock
and price [unlike condition (S)], the mecha-
nism discussed in this example can operate
with a message space of smaller dimension
compared to the mechanism used in Example
6.3. Further, agents have to verify fewer rules
in the operation of this mechanism compared
to the one used in Example 6.3, On the other
hand, if we consider the set of environments
for which we have been able to demonstrate
that each mechanism realizes the social goal
of optimality, we find that the set in this ex-
ample is smaller than the set in Example 6.3.

7. Intertemporal Mechanisms under
Incomplete Information: An
Impossibility Result

In the previous section, we siiowed how the
framework of decentralized resource alloca-
tion mechanisms can be formally adapted to
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the intertemporal context. However, once one
enquires how such mechanisms would oper-
ate over an infinite horizon, it appears that
the »verification scenario» would be a rather
implausible one.

Consider, for instance, the mechanism in
Example 6.4. Let us, in fact, consider the for-
tuitous case in which an equilibrium message
is proposed. All agents from now to infinity
have to verify that the message is indeed an
equilibrium one. But, at the current date, not
all agents are present — many are vet to be
born. For an infinite-horizon economy, wait-
ing till all the verification is complete before
implementing the equilibrium allocation is
really ». . . a prescription for economic paral-
ysis rather than a realistic model for econom-
ic behavior...» {Hurwicz and Weinberger
(1990, p. 317).

To resolve this difficulty, it is clear that we
have to restrict drastically the class of mechan-
isms which are acceptable, in the intertem-
poral context, as reflecting realistic economic
behavior. This line of reasoning has led to re-
search basically along two directions, the first
of which (an impossibility result for non-
stationary environment} we discuss in this sec-
tion, leaving the second (a possibility result for
a stationary environment) for the next section.

In order to discuss formally the first line of
enquiry, let £ >0 be a real number, and define
& ={f:f satisfies (F.1)—(F.4), and f(x)=<x
for x=§}. We denote a sequence (f,,f,
fy,...), where f, ¢ & for t=0, by f. Define
b={u: IR, — R satisfying (U.1), (U.2*) and
(U.3).

Consider, now, an intertemporal economy
in which the set of agents, I =t £ NJ, the space
of allocations, A, is R?, and the set of en-
vironments, E, is [(f, u, 8, y):f e & for
t=0,uep, 8e(0,)and ye R, . 1. In partic-
ular, then, one is allowing for changing tech-
nology in the set of environments. Given e in
E a program (%, y, c) is a sequence satisfying

Vo= %t =Ys Yo = LX),
(x, c}=0 fort=0

An optimal program is defined as before [see
(3.14)]. Given our definition of #, it is rou-
tine to check, following the method of proof
of Proposition 3.3, that there is a unique op-
timal program, given an environment € in E.
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Let us focus on a rather limited social goal,
The social goal function Q : E — A is defined
as follows. For egE,

Qe)={x, ¥, €} : (X, ¥, ©)
is the optimal program, given ¢

Thus, the social goal is simply to attain the
optimal allocation in the initial period.

It can be shown that the social goal is »sen-
sitive» to a change in the environment. This
can be formutated as follows. Given any pro-
duction function, fe &, we can define
F:R,—~R, by Fx)={f(x)]* for soine 0<
a<1; then Fg ¢ . Given any integer 1> 1, one
can then define f(t)=(f,(t), f,(z), £;,(1),...)
by f(t)=f for t=0,..., T and f,(t)=F for
t>7.

Proposition 7.1

Letv=1 be any integer. Given fe & ,ug\,
and 0<8 <1, there is y>0 such that for the
environments e=(f=, u, 8, y) and e(t)=
(f(r) u, 8, y) in E, Qe) #Qe(x)).

We are now interested in realizing this so-
cial goal by constructing a suitable mechanism
JSor the initial period. Unlike the intertemporal
mechanisms of the previous section, we re-
strict this mechanism by requiring that its
equilibrium message and outcome be com-
pletely determined by the agent living in the
initial period. Regarding the agent living in the
initial period, we suppose realistically that he
has less than complete information about the
environment. Specifically, there is a positive
integer T such that the production functions,
f, for t>T are not known to him. Formal-
ly, given {, denote (f,,. .., f) by fT. Now de-
fine the environment of agent zero, for e in
E, by E,(e)=[f", u, 8, y):e=(f, u, §, y)},
and E,=E,_(E).

Notice how much information we are al-
lowing agent zero to possess. He knows the
utility function, the discount factor, and the
production functions up to some finite T.
Thus one is not insisting on a separation
of information between »consumers» and
»producers». We are insisting that the agent
does not know e completely, when e happens
to be the actual environment, and our defini-
tion of ¥ (e) captures this in a minimally re-
strictive way.

Let us represent a mechanism for the ini-
tial period by ®,=(M,, v,, H,), where vy, is



Finnish Fconomic Papers 2/1981 — M. Majumdar and T. Mitra

a non-empty valued mapping from E, to M,,
and H, is a mapping from M, to A. We are
now in a position to state a result on the im-
possibility of realizing the social goal by any
mechanism, The idea is essentially simple. If
we consider two environments which differ
only in their production functions beyond T,
the agent living in period zero cannot know
about the difference. If a mechanism were to
realize the social goal for each environment,
then the social goal function must yield the
same period zero allocation for both environ-
ments. But this contradicts the result estab-
lished in Proposition 7.1 about the sensitivity
of the social goal function to a change in en-
vironment.

Proposition 7.2:

There is no mechanism which can realize the
social goal.

Proof:

Suppose a mechanism n,=(M,, v,, H,)
realizes the social goal. Let ©>T be any in-
teger. Given fe #, ueV, and 0<5<1, one
can find (by Proposition 7.1) y> 0, such that
for the environments e=(f*, u, §, y) and
e(r)=(f(1), u, 8, y), Q&) #Q(e(1)).

Now, since mn, realizes Q, and Q is a func-
tion, the performance correspondence ¢ is a
function satisfying

(B (e)) =Qfe)
$(Ey(e(1)) = Q(e())

But since E {¢)=E, (e(1)), the above equali-
ties imply Q{e)=0Q (e{t)), a contradiction.//

The above discussion gives a flavor of the
impossibility results which can be obtained
when agents have incomplete information
about the environment, and equilibrium allo-
cations in a period are decided by the currently
living agents. For a more exhaustive treat-
ment, the reader is encouraged to consult Hur-
wicz and Majumdar (1988).

8. Decentralized Evolutionary
Mechanisms

We have indicated in the previous section
the kind of restrictions we need to place on
mechanisms in order that they be plausible in

the intertemporal context. In this section, we
develop this theme more completely by in-
troducing the notion of »decentralized evolu-
tionary mechanismsy».

What we would like to formalize now is the
notion of a sequence of mechanisms, one for
each time period, such that only the agents
living at a given date decide the equilibrium
allocation of the mechanism at that date. Fur-
ther, this equilibrium allocation is actually car-
ried out at that date, and is therefore indepen-
dent of the opinions (verifications) of future
agents.

In formalizing the above idea, a question
arises regarding the treatment of the »initial
stock». Notice that in our discussion of inter-
temporal mechanisms in Section VI and in
constructing a mechanism for the initial pe-
riod in Section VII, the initial stock was
treated as part of the environment of the pro-
ducer in the initial period. When we consider
the mechanism for the date t=1, its »initial
stock» (y,) is determined by the equilibrium
outcome of the mechanism at date t =0, Thus,
the difficulty of treating it as part of the en-
vironment of the producer at datet =1 is that
then the environment at t = | becomes depen-
dent on the mechanism used at date t =0. The
social goal correspondence, which is defined
on the environment of the intertemporal econ-
omy, in turn, becomes dependent on the
mechanism used at date t=0. Thus, there is
no longer a meaningful way in which the per-
formance of a mechanism can be judged in
terms of realization of social goals, since the
latter concept is now dependent on the former
one.

There is no question that for any sensible
operation of the mechanism at date t== 1, the
agents at date t=1 must know their »initial
stock», y,. Thus, what seems to be called for
is to treat y, as something to be determined
at date t =0 (by the mechanism operating in
the initial period}, but as something which is
»common knowledge» (as a historically
recorded fact) at date t=1. The most con-
venient way to do this is to treat stock as a
wstate variable», and include in our descrip-
tion of mechanisms a suitable »state space».

We now proceed to formalize the above no-
tions by defining an evolutionary mechanism.
This is followed by an informal discussion
of how much a mechanism is supposed to
operate.
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We consider the following objects to be
given: a sef of agenis 1= {t, t):t& N}, a set
of environments, E C HO (E,.xB,), a space

t=

-

of allocations A= Ho A, and a state space
o t=

S=1I1 §,. We consider A, to be a subset of
t=0

a finite dimensional real space IR", and S, to
be a subset of a finite dimensional real space
R9, for te N.

An evolutionary mechanism is a sequence
=M, vy, H) where:

(a) M,, the message space in period t, is &
subset of a finite-dimensional real space,
denoted by R™;

(b) v, the equilibrium function in period t,
is & non-empty mapping from E x5, to
M,.

(c) H,=(H!, HY), the outcome function in
period t, is a mapping from M, to
RIxR* such that H (m)eS, xA, if
m, =y,{e, 5.

Given n, the performance function in pe-
riod t, ¢,, is defined for each (e, s) e E, x5,
by ¢, by ¢(e, sp=[H (m):m=ywy(e, 8).

Thus, given e E and s£5,, a mechanism
T generates a state sequence s by

5,8, S =9 (e, 5) forteN
and an allocation sequence a by
a=¢ e, s) forteN

Given n, the performance function ¢ from
ExS, to SxA is defined by ¢(e, s)=|(s,
a): s is the state sequence and a is the alloca-
tion sequence generated by n).

‘The above definition of an evolutionary
mechanism is similar in spirit to the notion of
an »evolutionary process» introduced by Hur-
wicz and Weinberger (1990, p. 317). However,
in incorporating explicitly the state space and
the state variable in defining the mechanism,
our definition is somewhat different from
theirs.

The dimensionality restriction on the mes-
sage space reflects the notion that transmis-
sion and usage of information is costly and
agents can process only a finite amount of in-
formation in each period.

The evolutionary mechanism w is privacy
preserving or decentralized if there exist equi-
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librium correspondences W, 1E xS —~M,
and vy, 1 E xS — M, for all t & N such that

Wy (elcy Cis S[)':ch(etc; Sz) ﬂ Win (etm S!)

for all (e, e, s) in E_XE, X8,

To see how this mechanism operates, con-
sider that an environment, e,, and a state, s,
for period zero, are given. The environment
would describe the preference of consumers
and technological possibilities of producers in
period zero. The state would describe the
stocks of various goods available at the be-
ginning of period zero.

A message m, is proposed to the agents in
period zero. The agents, knowing their respec-
tive environments, ¢, and e,, and the state,
s, (which is »common knowledge»), check
whether m, =V, (€., S,) and m, =W, (.., So)-
If it is, then m, is the equilibrinm message,
and the outcome function Hj specifies a state
s, in s,, and Hi specifies an allocation a, in
A, consisting of consumption/investment de-
cisions. This state, allocation pair is the equi-
librium outcome of period zero. It is to be un-
derstood that the equilibrium outcome is ac-
tually carried out in period zero, and the state
s, is actually attained {(at the beginning of
period 1). The above process is then repeated
fort=1,2,3,....

A social goal correspondence is a mapping
Q from Ex S, to SxX A. The mechanism, n,
realizes Q if for each (e, 5,) in ExS,, ¢(e, s,)
belongs to Q(e, s,).

We now examine how the above concepts
can be applied to our simple one-good inter-
temporal framework. We note, right away,
that in view of the impossibility result dis-
cussed in Section VII, there does not seem to
be any hope of realizing optimality in a non-
stationary environment. Thus, we confine our
attention to stationary environments in what
follows. Define a class of production func-
tions, & , and a class of utility functions, v
as in Example 6.4.

Consider a framework in which E_= If,
8):fe # and 0<8<1}, B _=[u: uslﬁ, and
E={(u~, f*, 8*):uev, feg # and 0<8<1].
Further, let A\=IR? and §,=0,k) fortg N.
Finally, define Q(e, v)={(x, y, ¢} : (x, ¥, ¢) is
the optimal program, given {e, y)}. The result
of Hurwicz and Weinberger (1990) would in-
dicate that there is no decentralized evolu-
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tionary mechanism which realizes the social
goal. [Our statement is deliberately a quali-
fied one, since the class of environments con-
sidered by Hurwicz-Weinberger is not exact-
ly E, and also because they impose some
»regularity» conditions on the evolutionary
mechanisms which are allowed for.]

One may ask, in view of the negative result
just stated, whether there is any decentralized
evolutionary mechanism whose outcomes
have some interesting normative properties.
This is the main theme of Bala, Majumdar
and Mitra (1999), and their result can be
described as follows,

Consider a framework in which E,=
[(f,8):fe # and 6=1}, E_={u:usV), and
E={u=, f=, 5):ucy, ft & and 8 =1}.
Further, let A =R? and S,=(0, k) for te N.
Finally, define Q(e, y)={(x, ¥, ¢): (x, v, ¢) is
an efficient program, and

T T
lim inf T-' Zu(e)=lim inf T-' X u(c)

T— = 0 T— o [+]

for all programs (x’, y°, ¢’), given (e, y)i. Thus,
the social goal is to attain an efficient program
which also maximizes long-run average utili-
ty among all programs, given the environ-
ment, e, and the initial stock, y.

Bala, Majumdar and Mitra (1990) construct
a decentralized evolutionary mechanism,
which realizes the above social goal. The
mechanism is based on a particularly simple
version of continual planning revision, studied
by Goldman and others. This mechanism
7 = (M, v, H) is defined as follows. The mes-
sage space at date t, M,=R%, for teN;
we write the generic element of M, as m,=
(X € Xps iy Yoy 0). Next, the equili-
brium correspondence of the consumer at date
t, w,, is given by y, (e, v)=[m,e M, :v'(c)
=r,u'(d,,)]; the equilibrium correspondence
of the producer at date t, v, is given by
Wi (8 VI = (meM, :x +e=y, fx)= v,
X tdo=Ye, &)=y, 'x)= r] for
teN. And, (e, e Yt)&\l’k (etc’ yd N
Yy, (e, vy for teN. Finally, the outcome
function, H,, is given by H,(m,)={y,,,, X, ¢
for te N,

It can be checked formally that n satisfies
the definition of a decentralized evolutionary
mechanism and r realizes the social goal de-
fined above. [The details are supplied in Bala,

Majumdar and Mitra (1990)1. We make the
following somewhat informal remarks about
the mechanism. In period t, given the message
m,, the consumer is asked to verify
fu’(c)/v’(d,, )] =1, The consumer, knowing
u, can surely perform this verification, which
is simply the equality of the marginal rate of
substitution with an appropriate »shadow»
price ratio, r,. The producer is asked to ver-
ify x +e=y, fX)=Veo1s X +dy, =Y
f(x,, )=y, and £(x)=r,. The first four con-
ditions are verifications of feasibility. The fi-
nal condition is the equality of the marginal
rate of transformation with an appropriate
»nshadow» price ratio, r. The producer,
knowing f and v,, can perform these verifica-
tions. The above verifications imply that
X +C=¥, fX)=Yp Xy, +d, o, . )=y
and [u'(c)/u’(d,, )]=f(x). But, these condi-
tions completely characterize a two period op-
timal plan for which the initial and terminal
stock is y.. Thus the state sequence generated
by the mechanism is precisely the state se-
quence generated by continual planning revi-
sion of two-period optimal plans with initial
and terminal stocks set equal to each other.
Since a program generated by such a planning
revision procedure is efficient and maximizes
long-run average utility, so does the state-
allocation sequence generated by this mecha-
nism.

9. Bibliographical Notes

The sketch of mechanism theory in Section
11 is based on Hurwicz (1986), an excellent sur-
vey of a number of aspecis of the literature
on mechanism-design. Less technical and less
formal reviews by Hurwicz (1973) and Reiter
{1986) are also insightful. The results in Sec-
tion III are well-known to specialists, but
somewhat scattered. Many of the results have
been proved in the multisector models. On the
necessity of the transversality condition (IF)
see Majumdar — Mitra —McFadden (1986)
and Mitra — Majumdar (1976). For references
to the literature on programs that are optimal
in the sense of (3.14) see the reviews by
Cass—Majumdar (1979) and McKenzie
(1986). The assumption that u is continuous
on R, can be dispensed with for most of the
results, and felicity functions like u(c}=1logc
can be handled. Specifically, Majumdar
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{1988) or Hurwicz —Majumdar (1988) allow
for such felicity functions. For multisector ex-
tensions of Proposition 4.2 in the discounted
and undiscounted cases see Dasgupta and
Mitra (1988a) and Brock and Majumdar
{1988).

Hurwicz and Majumdar {1988} also contain
some results where the production function f
is linear, i.e., f(x) = px for p>0. Dasgupta and
Mitra (19881) consider a class of multisector,
linear models and explore the possibility of
characterizing optimal programs in terms of
»period-by-period» conditions. The results
reported in Section V are new. Section VII is
adapted from Hurwicz and Majumdar (1988).
Section VIII is adapted from Bala, Majum-
dar and Mitra (1990).

Our discussion of intertemporal decentrali-
zation has been confined to the non-stochastic
case. For a non-technical review of some of
the problems that can arise in the stochastic
framework, see Radner (1970). For a discus-
sion of value and policy functions under un-
certainty, see Majumdar, Mitra and Nyarko
{1989). For results on price characterizations
of optimal programs with a stochastic tech-
nology (analogous to our Propositions 4.1 and
4.2), see Zilcha (1976, 1978). A version of our
Proposition 4.3 in the stochastic case (when
future utilities are not discounted) is contained
in Nyarko (1988).
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